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Abstract

With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-

implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional

global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be in-

vestigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time

steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we

use a relatively low-resolution (4� horizontally and 12 levels vertically) version. For this configuration, we present: (i) an

explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the

scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat

and salt.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The last decade has witnessed an enormous increase of interest in the dynamics of the ocean circulation

to understand its role in the climate system [1]. On time scales of a decade to thousands of years, oceanic

processes are a dominant factor in controlling the patterns and amplitude of climate variability. A typical
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example is the interdecadal variability as observed in North Atlantic sea-surface temperature records [2,3]

which is likely caused by changes in the thermohaline (i.e. density driven) ocean circulation [4].

As both the instrumental record of observations and the current paleodatabase is by far inadequate to
assess the role of the ocean on these long time scales, there is an enormous effort to model the ocean

circulation, both in isolation as well as coupled to the atmosphere and cryosphere. For studies of the

variability of the ocean circulation on decades or less, high-resolution eddy-resolving models are used. Low-

resolution models are typically used in climate related problems since long time intervals of integration can

be achieved [5].

There are several models available which can be used to study the global ocean circulation. One of the

well-known models is the Modular Ocean Model (MOM, [6]); a much used climate configuration has a

horizontal and vertical resolution of 4� and 12 layers [7]. Other types of models are the Miami Isopycnal
Ocean Model (MICOM, [8]) and the Hamburg Large-Scale Geostrophic (LSG) model [9]. While MOM and

MICOM are fully explicit [10] and use time steps of typically one hour, the LSG model is semi-implicit and

can run with time-steps up to one month.

A problem that has been much studied in the literature is the sensitivity of the global thermohaline

circulation to anomalies in the freshwater flux. Many models have a parameter regime where multiple

equilibria of the thermohaline circulation occur. A typical transient simulation demonstrating the existence

of the multiple equilibria is a quasi-equilibrium run where the freshwater input is changed very slowly with

respect to the equilibration time scale of the flow. The multiple equilibria show up as a hysteresis curve
when the anomalous forcing is first increased and then decreased [7,11]. The jumps in the hysteresis curve

are related to a transition from one stable state to another one.

Models such as MOM, MICOM and LSG are capable of forward time integration only and hence can

only determine (linearly) stable states. However, in a typical bifurcation diagram associated with the

hysteresis there are also unstable states [12]. While these states remain hidden for the forward models, they

play an important role in the transient behavior of the flow, for example in the response to a temporary

input of freshwater [13,14]. One would like to have models that determine these unstable equilibrium states

directly and that are able to follow these states efficiently in parameter space.
It is here that there is a role for fully-implicit ocean models. The �common knowledge� advantage of the

formulation of these models is that the time step is not limited by numerical stability but by accuracy, the

latter related to changes in the solution. On the other hand, the time steps are much more expensive because

a system of nonlinear algebraic equations has to be solved within each time step. Whether the implicit

model is computationally more efficient than an explicit model depends on a lot of factors and a com-

parison is in most cases difficult. However, when the linear systems solver performs well for large time steps,

one is also able to compute solutions to the steady state equations directly. As the solver for the nonlinear

equations determines isolated solutions, the steady states found may be either linearly stable or unstable.
When an implicit model is combined with a parameter continuation, the steady states can be efficiently

followed in parameter space.

When the Newton–Raphson method is used, several large-dimensional linear algebraic systems have to

be solved. Each of these involve sparse nonsymmetric ill-conditioned and usually banded matrices. Direct

solvers limit the dimension of these systems to several thousands. However, over the last decades a number

of iterative solvers have been developed which enable one to tackle systems having dimensions up to a few

hundred thousand; here application to global ocean models comes within reach.

A first step in the development of implicit ocean models was presented in [15]. For a single-hemispheric
sector domain, it was shown that three-dimensional ocean flows could be computed using much larger time

steps – in the approach to equilibrium, time steps of 50 years could be taken – than with explicit models. In

addition, it was demonstrated that with the implicit formulation, steady states could be followed in pa-

rameter space without computing any transient behavior; this is efficient to determine parameter sensitivity

of the flows. Finally, it was shown that the linear stability of steady states could be determined explicitly.
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Although several limitations of the fully-implicit model were presented in [15], it was stated that the

implicit approach would be applicable to a global ocean model with full continental geometry and bottom

topography. In this paper, we present results computed with such a fully-implicit global ocean model using
a relatively low horizontal resolution. Although there remain limitations with respect to representing the

global ocean flow as it is observed today, the results shown here are a major step forward in the devel-

opment of implicit ocean models. The advantages of the implicit approach are demonstrated by computing

the sensitivity of the ocean circulation versus changes in the spatial pattern of the North Atlantic freshwater

flux and versus the strength of the vertical mixing of heat and salt.
2. The global implicit ocean model

The global model here extends the model of [15] by applying the equations below to a global domain

with the inclusion of realistic bathymetry, wind forcing and thermohaline forcing. The ocean velocities in

eastward and northward directions are indicated by u and v, the vertical velocity is indicated by w, the
pressure by p and the potential temperature and salinity by T and S, respectively. The governing equations

in coordinates (k;/; zÞ are
Du
dt

� uv tan/
r0

� 2Xv sin/ ¼ � 1

q0r0 cos/
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where F , F ¼ ðF k; F /ÞT are an arbitrary scalar and vector, respectively and the superscript T indicates

transpose.

In the equations above, vertical and horizontal mixing of heat and salt is represented by eddy diffu-
sivities, with constant horizontal and vertical diffusivities KH and KV for both heat and salt. Laplacian

friction is taken for the mixing of momentum (for the terms (F u,F v), see [15]) with constant mixing coef-

ficients AH and AV in the horizontal and vertical, respectively. Density q is related to potential temperature

and salinity through an equation of state that is based on the polynomial expression used by [16]

qðT ; SÞ ¼ q0 1
�

þ a1S � b1T � b2T 2 þ b3T 3
�
: ð2Þ

The ocean circulation is driven by a wind stress ~ssðk;/Þ ¼ s0ðsk; s/ÞT, where s0 is the amplitude, and

where skðk;/Þ and s/ðk;/Þ provide the spatial patterns of the zonal and meridional winds. The transfer of
momentum from the surface downwards occurs in a thin boundary layer, i.e., the Ekman layer. Although

this may be explicitly resolved [17], we follow the methodology applied in many low-resolution ocean

general circulation models. The surface forcing is distributed as a body forcing over a certain depth of the

upper ocean using a vertical profile function gðzÞ

Qk
s ¼ gðzÞ s0

q0Hm
sk; Q/

s ¼ gðzÞ s0
q0Hm

s/; ð3aÞ

where Hm is a typical vertical scale of variation of the profile function gðzÞ. The function gðzÞ is taken unity

in the upper layer and zero below, so that Hm is the depth of the surface ocean layer.
The upper ocean is coupled to a simple energy-balance atmospheric model, in which only the heat

transport is modelled (no moisture transport). The atmospheric model used is one of the simplest versions

within the class of energy-balance models [18]. The equation for the atmospheric surface temperature Ta on
the global domain is given by

qaHaCpa
oTa
ot

¼ qaHaCpaD0rhðDð/ÞrhTaÞ � ðAþ BTaÞ

þ R0

4
Sð/Þð1� aÞð1� C0Þ þ loað1� LÞðT � TaÞ þ llaLðTl � TaÞ; ð4Þ

where qa ¼ 1:25 kg m�3 is the atmospheric density, Cpa ¼ 103 J (kg K)�1 the heat capacity, a ¼ 0:3 the

constant albedo, Ha ¼ 8:4� 103 m an atmospheric scale height, R0 ¼ 1:36� 103 W m�2 the solar constant,

D0 ¼ 3:1� 106 m2 s�1 a constant eddy diffusivity and 1� C0 ¼ 0:57 is the atmospheric absorption coeffi-

cient. The functions Dð/Þ and Sð/Þ give the latitudinal dependence of the eddy diffusivity and the short-
wave radiative heat flux with

Dð/Þ ¼ 0:9þ 1:5 exp

�
� 12/2

p

�
; Sð/Þ ¼ 1� 1

2
ð0:482ð3 sin/Þ2 � 1Þ: ð5Þ

The constants A ¼ 216 W m�2 and B ¼ 1:5 W m�2K�1 control the magnitude of the long-wave radiative
flux.

In (4), T is the sea-surface temperature, Tl the temperature of the land surface points and the coefficient L
indicates whether the underlying surface is ocean (L ¼ 0) or land (L ¼ 1). The exchange of heat between

atmosphere and ocean and between atmosphere and the land surface is modelled by constant exchange

coefficients. We assume here for simplicity that both are equal, with

lla ¼ loa ¼ qaCpaCH j Va j� l; ð6Þ

where CH ¼ 1:22� 10�3 and j Va j¼ 8:5 ms�1 is a mean atmospheric surface wind speed; it follows that

l � 13 W m�2 K�1.
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Boundary conditions for the atmosphere are periodic in zonal direction and no-flux conditions at the

north–south boundaries, i.e.

Taðk ¼ kW Þ ¼ Taðk ¼ kEÞ;
oTa
ok

ðk ¼ kW Þ ¼
oTa
ok

ðk ¼ kEÞ; ð7aÞ
/ ¼ �/S;/N :
oTa
o/

¼ 0: ð7bÞ

The net downward heat flux into the ocean and land is given by

Qoa ¼
R0

4
Sð/Þð1� aÞC0 � lðT � TaÞ; ð8aÞ
Qla ¼
R0

4
Sð/Þð1� aÞC0 � lðTl � TaÞ: ð8bÞ

When the heat capacity of the land is assumed zero, then Qla ¼ 0 and the land temperature Tl is com-

puted directly from

Tl ¼ Ta þ
R0

4l
Sð/Þð1� aÞC0: ð9Þ

The freshwater flux is prescribed in each of the results below and indicated by an amplitude F0 and a

spatial pattern FS . Hence, the expressions for QT in (1e) and QS in (1f) become

QT ¼ gðzÞ Qoa

q0CpHm
; ð10aÞ
QS ¼ gðzÞ F0FS
Hm

ð10bÞ

and this forcing is again represented as a body forcing over the upper layer. On the continental boundaries,

no-slip conditions are prescribed and heat- and salt fluxes are zero. At the bottom of the ocean, both the

heat and salt fluxes vanish and slip conditions are assumed.

Note that the model formulated here does not guarantee stably stratified solutions. As in all other large-

scale ocean models the effect of small-scale convection, which occurs when the stratification is not statically
stable, must be explicitly parameterized. Such a parameterization is usually referred to as �convective ad-

justment�. Two parameterizations have been implemented in the implicit model: the locally-enhanced dif-

fusion parameterization [19] and the Global Adjustment Procedure [20]. In the former method, the mixing

coefficient is increased locally in regions of unstable stratification. The Global Adjustment Procedure

generates a stably stratified solution by increasing vertical diffusivities in an iterative procedure that

removes all static instabilities.
3. Numerical methods

The equations are discretized in space using a second-order control-volume discretization method on a

staggered (Marker and Cell or Arakawa C-) grid, that places the p, T and S points in the center of a grid

cell, and the u, v, and w points on its boundaries. The spatially discretized model equations can be written in

the form
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M
du

dt
¼ FðuÞ ¼ LðuÞ þNðu; uÞ; ð11Þ

where the vector u contains the unknowns ðu; v;w; p; T ; SÞ at each grid point. The operators M and L are

linear and N represents the nonlinear terms in the equations.

In an implicit formulation, a class of two-level schemes can be written as

M
unþ1 � un

Dt
�HFðunþ1Þ � ð1�HÞFðunÞ ¼ 0 ð12Þ

using a time step Dt and a time index n. For H ¼ 1, this is the Backward Euler scheme and for H ¼ 1=2, it is
the Crank–Nicholson scheme. For each scheme, a system of nonlinear algebraic equations of the form

1

Dt
Munþ1 �HFðunþ1Þ ¼ 1

Dt
Mun þ ð1�HÞFðunÞ ð13Þ

has to be solved, which is done with the Newton–Raphson method. Steady states, if they exist, can be found

for one set of parameters by integrating in time and taking the limit t ! 1.

3.1. Continuation of steady states

It is often very efficient to directly solve for steady states as a function of parameters. For du=dt ¼ 0, (11)

reduces to

Fðu; pÞ ¼ 0: ð14Þ

Here the parameter dependence of the equations is made explicit through the p-dimensional vector of

parameters p and hence F is a nonlinear mapping from Rdþp ! Rd . To determine branches of steady so-

lutions of the equations (14) as one of the parameters, say l, is varied, the pseudo-arclength method [21] is
used. The branches ðuðsÞ; lðsÞÞ are parameterized by an �arclength� parameter s. An additional equation is

obtained by �normalizing� the tangent

_uuT0 ðu� u0Þ þ _ll0ðl� l0Þ � Ds ¼ 0; ð15Þ

where ðu0; l0Þ is an analytically known starting solution or a previously computed point on a particular

branch and Ds is the step-length.

To solve the system of Eqs. (14) and (15) a predictor–corrector method is applied. The secant method

and Newton method are used as predictor and corrector, respectively. During one Newton iteration, with

iteration index k, linear systems of the form

JðukÞ Dukþ1

Dlkþ1

� �
¼ rk

rkdþ1

� �
ð16Þ

have to be solved, where Dukþ1 and Dlkþ1 are the updates, respectively. The quantities rk and rkdþ1 are

derived from (14) and (15) and are given by

rk ¼ �Fðuk; lkÞ; rkdþ1 ¼ Ds� _uuT0 ðuk � u0Þ þ _ll0ðlk � l0Þ: ð17Þ

The ðd þ 1Þ � ðd þ 1Þ Jacobian matrix J of (14) and (15) along a branch is given by

JðuÞ ¼ U Fl

_uuT0 _ll0

� �
; ð18Þ
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where U is the matrix of derivatives of F with respect to u and Fl the derivative of F with respect to the

parameter l.
When a steady state �uu is determined, the linear stability of the solution is investigated by considering the

evolution of infinitesimally small perturbations ~uu on �uu. Linearization of the evolution equations for ~uu and a

normal mode analysis lead to a generalized eigenvalue problem of the form

A1x ¼ rA2x; ð19Þ

where A1 ¼ U and A2 ¼ �M are in general nonsymmetric matrices and r ¼ rr þ iri is the complex growth

rate. In the particular model here, A2 is a singular diagonal matrix because time derivatives are absent in the

continuity equation and vertical momentum equation. We use here the Simultaneous Iteration Technique

[22] to solve for the most dangerous modes (i.e. those closest to the imaginary axis); for details see [14].

3.2. Solution of nonlinear algebraic systems

Since the Newton method requires computation and inversion of the Jacobian J in (16) at each iterative

step, alternative corrector procedures have been applied. The algorithms that have been implemented are
the Newton–Chord method, the Shamanskii method and the Adaptive Shamanskii method [23]. The

Newton–Chord method is a so-called parallel chords method that uses a Newton step as the first iteration;

this means that JðukÞ is replaced by the fixed matrix Jðu0Þ. This Jacobian is computed and inverted once per

continuation step and this matrix is being used throughout the iterative procedure. The drawback of the

resulting gain in computational efficiency is a deterioration in convergence behavior from quadratic to

linear.

The Shamanskii method alternates one �outer� iteration of the Newton method with l �inner� iterations of
the Newton–Chord method. Taking a few inner iterations after each Newton step reduces the number of
outer iterations considerably and speeds up convergence, which may become super-linear under reasonable

circumstances. This procedure may even become more efficient if l is determined during the iterative

process, rather than chosen beforehand, resulting in the Adaptive Shamanskii method. In the present code,

l is determined on the basis of the time needed for an outer (To) and an inner iteration (Ti), and the con-

vergence constants of the (quadratic) Newton method (kn) and the (linear) Newton–Chord method (knc). If
�n ¼ jjxn � xjj is the error of the nth approximation of x, then with the Newton method the next approx-

imation will have an error close to �nþ1 ¼ kn�2n. The number of Newton–Chord iterations l needed to attain

the same accuracy can be estimated from �nþ1 ¼ ðkncÞl�n, leading to

l ¼ logðkn�nÞ= logðkncÞ: ð20Þ

Now, as long as

knc < exp logðkn�nÞ �
Ti
To

� �
ð21Þ

it holds that l � Ti < To, and then it is more efficient to perform Newton–Chord iterations.

Higher efficiency can be obtained when the step size Ds of the arclength parameter s is adjusted during

the continuation process. On parts of the branches of steady states, the solutions will vary little and large

steps can be taken. On other parts, for instance when a saddle-node bifurcation is encountered, small steps

are necessary to follow the curve in parameter space. We implemented a step-size control algorithm [24]

that adjusts the step size with a factor n ¼ Nopt=N , which depends on the number of iterations N needed in

the last continuation step, and an optimum value Nopt, which depends on the method used. For the Newton

method Nopt ¼ 4 is chosen, for the other methods Nopt ¼ 7. If the corrector method diverges or does not
converge within 2Nopt iterations, the continuation step is repeated with halved step size.
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3.3. MRILU

During the solution process described in the previous subsection, linear systems have to be solved. For

the ocean model, these systems are nonsymmetric, ill-conditioned and of large dimension (about 300,000).

A tailored method has to be used to solve these systems efficiently. We use a solver which is called Matrix

Renumbering Incomplete LU (MRILU). MRILU is a multilevel ILU factorization in which simultaneously

the factorization and the (multilevel) ordering is constructed, based on the magnitude of the matrix entries.

Used within a Krylov-subspace method an effective solver results [25]. For the ocean model it appeared to

be beneficial to do only a few reduction steps and hence only a few levels are used. On the coarsest level, a

drop tolerance ILU factorization is used. The ocean model equations constitute a coupled system of six
partial differential equations and therefore we use a block variant of MRILU in which the diagonal is a

block diagonal matrix with blocks of order six.

MRILU is not a black box solver and requires a small set of parameters to be tuned for each particular

problem at hand. For a limited number of reduction steps, the most critical parameter is the drop tolerance

in the ILU factorization of the last block which determines the amount of memory to be used by the

preconditioner. The smaller the tolerance the larger the fill-in and the faster the convergence. It provides a

trade-off between CPU and memory usage.

As was indicated in [15], the performance of MRILU can be improved by an a priori scaling of the
matrix. The effect of scaling on MRILU can be easily illustrated by considering the matrix

1 a
b 0

� �
;

in which the zero is mimicking the zero block arising for the pressure in the continuity equation of the
incompressible Navier–Stokes equations. If a or b is smaller than the drop tolerance then the dropping of

one of these causes the matrix to become singular, which is undesired. This can be avoided by scaling the

equations and the unknowns such that a and b are both of magnitude 1. To obtain an efficient method, this

type of imbalance should be avoided by applying the scaling.

In [15], the scaling was determined manually and had to be tuned for each configuration separately. A

major improvement in the present version is an algorithm which determines the scaling adaptively. The

scaling is based on the average diagonal block (of order six) of the matrix, which we call B below. Let a

typical off-diagonal block be indicated by C and assume that the diagonal blocks in the matrix are
well represented by B. Then our aim with the scaling is that elements in C that lead to small contributions

in both B�1C and CB�1 are to be dropped. In order to avoid that one of the criteria is much more strin-

gent than the other, we require that the extrema per row and column of the inverse of B are of equal

size.

An example serves to demonstrate the steps in the scaling. A typical diagonal block in the Jacobian

matrix of the ocean model equations is given by
B ¼

2:16 �0:08 0 �9:05 0 0

0:02 2:04 0 �6:08 0 0

0 0 0 �6:00 �0:79 0:60
0:11 0:07 6:40 0 0 0

�12:1 �7:70 �630: 0 29:3 0
�0:11 �0:04 �4:79 0 0 25:3

2
6666664

3
7777775
and its inverse is
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H � B�1 ¼ 10�2

45:2 1:02 �69:2 �183: �1:87 1:64
�1:19 48:5 �47:3 �125: �1:28 1:12
�0:76 �0:55 1:71 20:1 0:05 �0:04
�0:25 �0:18 �16:1 �42:5 �0:43 0:38
1:93 1:38 �4:31 325: 3:30 0:10
0:05 �0:02 �0:05 2:82 �0:00 3:95

2
6666664

3
7777775
:

Note that the extremum in the fourth column (325.) is about one hundred times larger than the extremum

in the fifth column (3.30), which is undesirable. In order to balance rows and columns an algorithm per-

forming the following operations is applied to H
1. Multiply the first row and column by respective factors, the product being one, such that the scaled el-

ements H14 and H41 become more balanced. We require that the ratio of the scaled H14 and H41 is the
square root of that of the original ratio. Likewise for the second row and column.

2. By scaling the fourth row and column by the same factor the element H44 is made of the same magnitude

as H11.

3. The third row and column are scaled by the same factor such that the maximum of jH43j and jH33j is of
the same magnitude as H11. In practice, we anticipate here for diagonal blocks occurring in later stages of

the elimination process by dividing this factor by two.

4. The fifth row and column are scaled such that simultaneously the magnitude of H45 is equal to that of H54

and H55 is equal to H11. We refrain from this double criterion if jH45H54j < 0:01jH44H55j and use a sym-
metric scaling to satisfy only the last criterion. Likewise for H46, H64 and H66.

Applying this algorithm gives the following scaled inverse

ĤH � B̂B�1 ¼ 10�2

45:2 1:00 �18:4 �35:6 �36:3 0:11
�1:21 48:5 �12:8 �24:9 �25:3 0:74
�5:49 �3:86 3:26 28:3 6:44 �0:19
�1:32 �0:96 �22:6 �43:8 �44:6 1:31
1:36 0:96 �0:81 44:6 45:2 0:05
0:88 �0:39 �0:25 9:69 �0:49 45:2

2
6666664

3
7777775
:

The net effect of the scaling is that now the extrema in each row and corresponding column are of the

same order of magnitude. In practice, we determine this scaling from the average diagonal block B, and
apply it then to each block; this effectively provides a row and column scaling of the whole matrix. Note

that the scaling algorithm defined above is still problem dependent but that the same idea can be employed

in each case.

3.4. Remaining problems

In the implicit model defined here, there remain two fundamental problems which still have to be

overcome. The first problem is a restriction on the value of the lateral friction coefficient AH and the second

problem is an efficient and robust implementation of a �convective adjustment� algorithm.

Many explicit ocean models of 4� resolution use typical values of AH ¼ 2:5� 105 m2 s�1. If one considers

the momentum equations in a single-hemispheric basin [15], this value is far too small to resolve the Ekman

boundary layer near the eastern wall. This boundary layer has a thickness ðAH=f0Þ1=2, where f0 ¼ 2X sin/0

is the value of the Coriolis parameter at latitude /0. General numerical practice is to resolve these boundary

layers, since otherwise wiggles are encountered.

In the MOM model, it turns out that the steady states that are found indeed display wiggles near the

eastern boundary, but their amplitude remains small. When the implicit model is used to compute steady

states with this value of AH, the wiggles are seen in the whole solution. The great advantage of the B-grid in
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the MOM model turns up here, as the discretization of the Coriolis terms provide difficulties on the C-grid

[26] due to the presence of the �velocity modes�. The problem is exacerbated in the implicit approach because

the whole system of equations is solved simultaneously and there is no decoupling of barotropic and
baroclinic modes.

It has been shown that the problems with the velocity modes disappear with sufficient horizontal res-

olution [26]. Hence we have not pursued any fixes, such as first-order discretization of the Coriolis terms

near the boundaries. As the B-grid has severe disadvantages in that pressure points are decoupled (oc-

currence of so-called �pressure modes�), it seems no option in the development of implicit models. In the

results below, we therefore restrict to the C-grid case in which the value of AH is such that the lateral Ekman

boundary layers are resolved and lateral friction damps the velocity modes.

Convective adjustment is widely used in ocean models and is easily implemented in explicit models, but it
turns out to be difficult to use in implicit models. The main difficulty are the nondifferentiable properties

associated with on/off behavior depending on the local vertical density gradient. Local convective adjust-

ment may lead to spurious equilibria [27,28] while the Global Adjustment Procedure [15] cannot be used in

a continuation set-up; the latter procedure is also very expensive. In addition, the convective adjustment

procedure introduces huge off-diagonal coefficients to the matrix U in (18) and severely degrades the effi-

ciency of the preconditioners. Hence, convective processes are not represented in the results below.

The resulting solutions appear �less realistic� than those of other ocean models with a comparable res-

olution. However, they are the most �clean� solutions of the governing system of hydrostatic partial dif-
ferential equations, in that boundary layers are well-resolved and no ad-hoc procedures for convection have

been applied. Under these limitations of the model, there are still many interesting problems to study with

it, because many phenomena do not depend qualitatively on the value of AH and on convective adjustment.

Two of these problems will be considered in the next section: the hysteresis behavior of the thermohaline

circulation and the scaling relation between the Atlantic meridional overturning and the vertical mixing

coefficient KV.
4. Capabilities of the implicit model

We first choose specific forcing conditions in Section 4.1 and then determine a reference steady state by

continuation. The bifurcation diagram due to changes in the freshwater flux pattern is presented in Section

4.2. In Section 4.3, results of transient implicit computations are shown, while parameter sensitivity of the

reference solution is considered in Section 4.4.

4.1. The reference solution

The model domain represents the entire World Ocean, with the longitude k ranging from 0� to 360� and
the latitude / from 85.5�S to 85.5�N, on a 96� 38 grid. The grid has 12 levels in the vertical and is non-

equidistant with the most upper (lowest) layer having a thickness of 50 m (1000 m), respectively. The
bathymetry is derived from the ETOPO-10 data set, which is interpolated onto the model grid and

smoothed. Standard values of the model parameters are listed in Table 1. The mixing coefficients of heat

and salt are typical for low-resolution ocean models, while the value of AH is much larger, for reasons

discussed above.

Starting from the trivial state, at zero solar forcing, no freshwater flux and no wind-stress, first an

equilibrium state is determined under the annual-mean wind stress as in [29], the analytical form of the solar

forcing and the Levitus surface salinity distribution [30]. For the computation of the reference solution, a

restoring time scale of 75 days is used for the Levitus surface salinity; properties of the reference steady state
are plotted in Fig. 1.



Table 1

Standard values of parameters used in the numerical calculations

2X ¼ 1:46� 10�4 (s�1) r0 ¼ 6:37� 106 (m)

q0 ¼ 1:0� 103 (kg m�3) AV ¼ 1:0� 10�3 (m2 s�1)

KH ¼ 1:0� 103 (m2 s�1) KV ¼ 8:0� 10�5 (m2 s�1)

Cp ¼ 4:2� 103 (J kg�1 K�1) g ¼ 9:8 (m s�2)

AH ¼ 1:6� 107 (m2 s�1) Hm ¼ 50 (m)

a1 ¼ 7:6� 10�4 ()) b1 ¼ 5:6� 10�5 (K�1)

b2 ¼ 6:3� 10�6 (K�2) b3 ¼ 3:7� 10�8 (K�3)

(a) (b)

(c) (d)

Fig. 1. Properties of the steady global ocean circulation pattern at standard parameter values and forcing conditions, with the surface

salinity restored to Levitus values with a time scale of 75 days. Contour levels are in Sv. (a) Barotropic streamfunction (Wmin ¼ �15:8

Sv,Wmax ¼ 12:1 Sv), and (b–d) meridional overturning streamfunctions in the (b) Atlantic (Wmin ¼ �2:9 Sv,Wmax ¼ 10:7 Sv), (c) Pacific

(Wmin ¼ �12:3 Sv, Wmax ¼ 11:4 Sv) and (d) Indian Ocean (Wmin ¼ �5:0 Sv, Wmax ¼ 2:0 Sv).
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In the barotropic streamfunction (Fig. 1(a)), the Antarctic Circumpolar Current can be seen with the

gyre structure in each basin. The maximum volume transport of the Antarctic Circumpolar Current is

about 12 Sv – a factor 10 smaller than observed – the latter due to the large value of AH. The maximum of
the Atlantic meridional overturning streamfunction (Fig. 1(b)) is about 11 Sv, which is slightly smaller than

in other models [31]; this is due to the absence of convective adjustment. As shown in [15], the difference

between the unadjusted and adjusted solutions is usually a few Sv while the overall pattern of the over-

turning remains the same. There is also no bottom-water formation in the Southern Ocean and hence an

equivalent of Antarctic Bottom Water is absent. The meridional overturning in the Pacific Ocean (Fig. 1(c))



(a) (b)

Fig. 2. (a) Surface salinity anomaly with respect to S0 ¼ 35 psu, with Smin ¼ �4:7 psu and Smax ¼ 2:2 psu. (b) Diagnosed freshwater

flux field (in units of 10�8 ms�1) of the state in Fig. 1. The minimum and maximum values are )15.8� 10�8 m s�1 and 12.5� 10�8 m s�1,

respectively.
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and the Indian Ocean (Fig. 1(d)) is relatively strong with extremes of about )12 and )5 Sv, respectively. In

all three oceans, there are Ekman driven surface circulation cells having a strength of a few Sv. Although
many details of this equilibrium solution are incorrect when compared to observations, the overall char-

acteristics of the global flow are captured.

Next, the freshwater flux is diagnosed from this reference solution; this flux (indicated by F 1
S , see

Fig. 2(b)) is needed to maintain the Levitus surface salt field (shown in Fig. 2(a)) under the steady state

reference flow. Largest amplitudes with typical values of 3.8 m yr�1 occur over the southern Indian Ocean

and in the northern North Atlantic. Although the freshwater flux differs substantially from the observed

annual mean field [32], there is reasonable agreement with the diagnosed fluxes calculated in other OGCMs

[33,34]. For example, in the North Atlantic, there is a zonal dipolar structure with large amplitude that can
also be seen in Fig. 8a of [34] and Fig. 2 of [33]. The salt input in the positive part of this dipole near 40� is
needed to compensate for the model�s incorrect representation of the salt transport due to the Gulf Stream.

4.2. The bifurcation diagram

We first define a region near New Foundland, similar to region A in [7], with domain P ¼ fðk;/Þ 2
½300; 336� � ½54; 66�g. To study the impact of changes in the freshwater flux pattern, a perturbation flux FSp
is defined as

FSp ¼ cpF
2
S ðk;/Þ ð22Þ

where F 2
S ðk;/Þ ¼ 1 in the region P and zero outside. The value of cp controls the amplitude of the fresh-

water perturbation and following previous model studies [7], it is expressed in Sv. When changing cp, one
has to take care that the salt balance is closed, i.e. we subtract the surface integrated value Q from the total

freshwater flux profile such that

1

j S j

Z
S
ðF 1

S ðk;/Þ þ cpF
2
S ðk;/ÞÞr20 cos/dkd/� Q ¼ 0; ð23Þ

where j S j is the total area of the ocean surface.

The bifurcation diagram, showing the maximum Atlantic meridional overturning Watl of the steady

solutions versus cp, is plotted in Fig. 3. Drawn branches indicate linearly stable solutions, whereas the
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Fig. 3. (a) Bifurcation diagram showing the steady states of the global ocean circulation as a plot of the maximum meridional Atlantic

overturning versus the anomalous freshwater-flux strength cp (in Sv). The point labelled A represents the reference solution (for

cp ¼ 0). (b) Pattern of the meridional streamfunction in the Atlantic for the state B in (a); contour values are in Sv, Wmin ¼ �2:7 Sv,

Wmax ¼ 6:4 Sv; (c) Similar as (b) but for state C, Wmin ¼ �3:9 Sv, Wmax ¼ 5:0 Sv; (d) Similar as (b) but for state D, Wmin ¼ �8:3 Sv,

Wmax ¼ 2:9 Sv.
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solutions on the dashed branch are unstable. Complementary to the quasi-equilibrium simulations with

OGCMs, the computations here provide: (i) the exact location of the saddle-node bifurcations (L1 and L2 in
Fig. 3); and (ii) the solutions on the unstable branch. The saddle-node bifurcations (at cp ¼ �0:18 Sv and

cp ¼ �0:052 Sv) exactly bound the regime of multiple equilibria of the global ocean circulation. For values

of cp smaller than )0.18 Sv only the collapsed state exists.

The Atlantic meridional overturning streamfunction of the solutions at the locations B, C and D is plotted

inFigs. 3(b)–(d), respectively. State B still has substantial northward sinking, while in stateDnorthern sinking

is absent. In the unstable state C, the northern sinking is substantially reduced but southern sinking is

still relatively weak. Along the unstable (dashed) branch, the solution totally changes character as the

northern sinking is inhibited and the volume of bottom water coming from the south increases. The Atlantic
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overturning strength of the northern sinking solution seems to remain fairly constant along the unstable

branch. However, this is a consequence of the norm chosen, sinceWatl is in this regime only determined by the

wind-driven Ekman cell at the surface. For cp ¼ �0:23 Sv, only the collapsed state E exists with a meridional
overturning pattern similar to state D.

4.3. Transient flows

To illustrate the transient flows in this model, we focus on the case cp ¼ �0:15. We take state B in Fig. 3

as the initial state and determine the flow behavior once an anomalous freshwater-flux forcing is applied to

this state (over the domain P ). Starting at state B, we change cp from )0.15 to )0.23 over a time interval

t 2 ð0; tm�. For t > tm, the anomalous forcing is removed by switching cp back to )0.15. We monitor the

evolution of the flow for different values of tm using the implicit model. The bifurcation diagram in Fig. 3(a)

indicates that state B may collapse to state D.

The drawn curve in Fig. 4 shows the evolution of the flow for tm ¼ 1, i.e. a permanent freshwater-flux

perturbation. In this case, the flow approaches the unique steady state for cp ¼ �0:23 (which is state E in
Fig. 3(a)) after about 1000 years. When tm ¼ 100 year, the Atlantic overturning circulation first decreases

rapidly, but it recovers as soon as the forcing is removed. For large times, e.g. tm ¼ 400 year, the Atlantic

overturning circulation collapses and it does not recover as the forcing is removed; the state D is finally

approached. It turns out that the transition point separating recovery and collapse is located near tm ¼ 220

year for which the Atlantic overturning is about 5 Sv. The latter value is closely related to the value of the

unstable state C.

In the initial stages of the flow evolution relatively small time steps have to be taken (0.2 year) for the

Newton–Raphson process to converge. In the approach to steady state much larger time steps (up to 100
year) are possible. The transient computations were used to test the performance of the solver of the
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Fig. 4. Trajectories of the global model. The drawn curve starts at state B and shows the time evolution under conditions cp ¼ �0:23

for tm ¼ 1; it ends up for t ! 1 in state E. The dashed curve is for tm ¼ 100 and the dash-dotted curve is for tm ¼ 400. The other two

curves are for two times tm just near the transition point separating recovery and collapse.



Table 2

CPU time and number of iterations for the test problem, for several time steps Dt ¼ 10, 20 and 40 year, using the Newton–Raphson

method and the Adaptive Shamanskii method. The residue in both methods is 1.0� 10�6. The timing is performed on a 500 MHz XP-

1000 workstation with 2 Gb internal memory

Method Dt (year) # Decomp. # It. steps Time (s)

Newton–Raphson 10 3 3 1890

20 4 4 3100

40 4 4 3240

Adaptive Shamanskii 10 1 4 679

20 1 5 778

40 1 8 971
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nonlinear system of equations. The case considered is for tm ¼ 1 (the drawn curve in Fig. 4) at t ¼ 220

year. Table 2 tabulates the total CPU time for one time step (10, 20 and 40 year) and the number of it-

erations taken, for both the Newton–Raphson and the Adaptive Shamanskii method described in Section

3.2. Note that a factor 3 reduction in CPU time can be achieved by applying the Adaptive Shamanskii
method.

4.4. Parameter sensitivity

With the implicit model, the sensitivity of the solutions to parameters can be investigated efficiently. To

illustrate this, we determined the dependence of the global flow versus the vertical mixing coefficient KV.

Starting at the reference solution and using restoring to the Levitus surface salt field (with a restoring time

of 75 days), the steady states are followed in the parameter KV. In Fig. 5, the Atlantic meridional over-

turning Watl is plotted versus KV together with curves of different power law dependencies. Over the whole

range of KV, a clear 1/3 power dependence is found.

This result is interesting and stimulates further study. While there is much literature on these scaling

relations in OGCM�s for different configurations (e.g. [35]), there do not appear to be studies of the scaling
of the global circulation. For thermohaline flows in a single-hemispheric basin, it has been well-established

that the meridional overturning WM scales with KV according to a 2/3 power dependence. This is in ac-

cordance with classical scaling arguments that do not consider the wind forcing [36], i.e. the �thermal� wind
balance, the continuity equation and an advection/diffusion balance of heat at the thermocline. These

balances yield scales

WM � K2=3
V r4=30

Dqg
2X

� �1=3
; ð24Þ

where Dq is a characteristic meridional density difference.

One might think that the limitations of the model here (large AH, no convective adjustment) would give a
different scaling relation than those in single-hemispheric configurations. However, this is not the case.

Using the implicit model, we computed the scaling relations for the single-hemispheric configuration as in

[15], i.e. an ocean only model with a meridionally dependent idealized surface temperature forcing. In Fig. 6,

the maximum meridional overturning Wmax
M is shown as a function of KV for AH ¼ 1:6� 107 m2 s�1 for both

cases: without (Fig. 6(a)) and with (Fig. 6(b)) local convective adjustment. In agreement with previous

model studies, a clear 2/3 power law dependence is found in both cases. We also used the MOMmodel with

AH ¼ 1:6� 105 m2s�1 and convective adjustment and found the same 2/3-power law [37].

These results indicate that the global scaling relations are indeed qualitatively different from the single-
hemispheric case. A study by [38] has already indicated that this may occur due to the presence of the
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Fig. 6. Scaling behavior of the flow with KV for the implicit model in the single-hemispheric configuration used in [15] for

AH ¼ 1:6� 107 m2 s�1 and (a) no-convective adjustment and (b) with convective adjustment.
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Antarctic Circumpolar Current. The precise physical balances causing this behavior still have to be in-

vestigated and the explanation is outside the scope of this paper. Here, the result is only presented as a

demonstration that arclength continuation with an implicit model is a highly efficient method to determine

parameter sensitivities of model solutions.
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5. Discussion and conclusion

As an alternative to traditional explicit ocean models, we have presented a fully-implicit formulation of

the equations governing the ocean circulation in [15]. In the present paper, it is shown that this formulation

can be applied to a global ocean configuration with realistic continental geometry and bathymetry. This

new approach allows for a more efficient analysis of the sensitivity and stability of the global ocean cir-

culation. We have demonstrated the potential of the model in following steady states through parameter

space using continuation techniques and by performing time-integrations with very long time steps (relative
to those in explicit models).

With the coarse resolution used, the model solutions capture only the overall large-scale properties of the

global oceanic flow. For the solutions, the wind-driven circulation is severely underestimated because of the

large value of AH. Moreover, the strength of the meridional overturning is also underestimated because of

the absence of convective adjustment. Although convective adjustment is not essential for generating

thermohaline circulation, it is of quantitative importance for the strength of the overturning and the

temperatures in the deep ocean [39,40]. In addition, improvements of the mixing parameterizations [41] are

needed to increase the quality of the solutions.
With these clear limitations of the implicit model, we have demonstrated that still meaningful and in-

teresting results can be obtained. The capabilities of the model were shown by computing the bifurcation

diagram associated with the hysteresis behavior of the global circulation. As these transitions have been

found in many low-resolution OGCMs in similar regimes of cp, the existence of the multiple equilibria

regime appears not very sensitive to lateral friction and convective adjustment. The capabilities in com-

puting trajectories using relatively large time steps has been demonstrated by looking at the evolution of the

global circulation as it is temporarily perturbed with a freshwater-flux perturbation. The usefulness of the

implicit model is here that one can efficiently compute the boundary between collapse and recovery. Finally,
we found an interesting result in the scaling behavior of the global ocean circulation with the vertical mixing

coefficient KV by following steady states in parameter space.

The key to being able to perform these tasks is the solution of large linear systems of equations with

tailored iterative solvers. The combination of the adaptively scaled MRILU preconditioning technique with

a conjugate gradient solver [15] enables one to compute solutions to the steady or time-dependent equations

for reasonable horizontal and vertical resolutions. While the present system (with a 4� horizontal resolu-
tion) contains over 280,000� of freedom, 2�-calculations with more than 1,000,000 degrees of freedom are

currently in progress. As the performance of these solvers are still improving, it is not unreasonable to
expect that solutions for a 1� resolution with about 5� 106 degrees of freedom can be computed in the near

future.

The results presented here open the way to address issues related to stability and variability of the global

ocean circulation from a dynamical systems point of view [14]. The research tool presented here may

therefore contribute to a fundamental understanding of the climate system and its low-frequency

variability.
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